2 research outputs found

    Optimal Index Codes via a Duality between Index Coding and Network Coding

    Full text link
    In Index Coding, the goal is to use a broadcast channel as efficiently as possible to communicate information from a source to multiple receivers which can possess some of the information symbols at the source as side-information. In this work, we present a duality relationship between index coding (IC) and multiple-unicast network coding (NC). It is known that the IC problem can be represented using a side-information graph GG (with number of vertices nn equal to the number of source symbols). The size of the maximum acyclic induced subgraph, denoted by MAISMAIS is a lower bound on the \textit{broadcast rate}. For IC problems with MAIS=nβˆ’1MAIS=n-1 and MAIS=nβˆ’2MAIS=n-2, prior work has shown that binary (over F2{\mathbb F}_2) linear index codes achieve the MAISMAIS lower bound for the broadcast rate and thus are optimal. In this work, we use the the duality relationship between NC and IC to show that for a class of IC problems with MAIS=nβˆ’3MAIS=n-3, binary linear index codes achieve the MAISMAIS lower bound on the broadcast rate. In contrast, it is known that there exists IC problems with MAIS=nβˆ’3MAIS=n-3 and optimal broadcast rate strictly greater than MAISMAIS

    Index Coding: Rank-Invariant Extensions

    Full text link
    An index coding (IC) problem consisting of a server and multiple receivers with different side-information and demand sets can be equivalently represented using a fitting matrix. A scalar linear index code to a given IC problem is a matrix representing the transmitted linear combinations of the message symbols. The length of an index code is then the number of transmissions (or equivalently, the number of rows in the index code). An IC problem Iext{\cal I}_{ext} is called an extension of another IC problem I{\cal I} if the fitting matrix of I{\cal I} is a submatrix of the fitting matrix of Iext{\cal I}_{ext}. We first present a straightforward mm\textit{-order} extension Iext{\cal I}_{ext} of an IC problem I{\cal I} for which an index code is obtained by concatenating mm copies of an index code of I{\cal I}. The length of the codes is the same for both I{\cal I} and Iext{\cal I}_{ext}, and if the index code for I{\cal I} has optimal length then so does the extended code for Iext{\cal I}_{ext}. More generally, an extended IC problem of I{\cal I} having the same optimal length as I{\cal I} is said to be a \textit{rank-invariant} extension of I{\cal I}. We then focus on 22-order rank-invariant extensions of I{\cal I}, and present constructions of such extensions based on involutory permutation matrices
    corecore